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ABSTRACT 
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Several models which have been used to analyze theilow f re -  

quency dielectric dispersion of Ni-Zn o r  Mn ferrites are discussed. 

Based on the analytic nature of the dispersion functions correspond- 

ing to these models, it is shown what experimental data are re- 

quired to decide the validity of specific models. 
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Einige Modelle, die zur Analyze der  dielektrischen Nieder- 

frequenzdispersion von N i  -2n oder Mn Ferri ten untersucht wurden, 

werden besprochen. Auf Grund der  analytischen Natur der  diesen 

Modellen entsprechenden Dispersionfunktionen wird gezeigt, welche 

experimentellen Daten erforderlich sind, um die Ec-htheit von 

spezifischen Modellen zu bestimmen. 
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I. INTRODUCTION 

In a recent work, Krotzsch proposed a new model of dielectric relaxation 
of ferrites at low frequencies.1 Since the discovery of an anomulous increase of 
the dielectric constant at low frequencies of some Mn-ferrites,2 a large number 
of publications have appeared on this subject, 18 references are given in Ref. 1, 
to which we will repeat the work of Koops3 and of K a m i y ~ s h i , ~  which we will 
discuss. We also would like to add an interesting reference of Grant.5 In fact, 
the work of Grant is not quite complete because he has not analyzed explicitly 
the mathematical implications. Therefore, we will devote Part I1 to discuss 
the underlying mathematical formclations. In Part 111, we will compare different 
models and point out some decisive tests of those models. 

II. COMPLEX CONDUCTIVITY REPRESENTATION 

A convenient representation to analyze the dielectric relaxation data is the 
so-called Cole-Cole diagram6 where the t race of the frequency is plotted in the 
complex plane of the dielectric permittivity. Recently Grants has shown that 
another representation has some desirable features, that is, plotting the 
t x c e  of the frequency in  the complex plane of the dielectric conductivity. The 
* p  A L t h n  0 7 

is given by, 
between the complex permittivity, E * , and the complex conductivity, cr* , 

0 



where 

and subscripts are to be identified with the value of w ,  the frequency. Grant has 
shown that such a plot is particularly useful at low frequencies where d.c. con- 
duction becomes prominent. Some time ago Skanavi7 also has discussed the 
complex conductivity representation, but h i s  treatment is limited to the case of 
Debye relaxations with a single relaxation time. Grant analyzed data which show 
a continuous distribution of relaxation times. In particular, he has treated a 
datum of Koops3 on theNi -Znferrite dielectric dispersion, Grant's analytical 
diagram is reproduced in Fig. 1. The complex conductivity diagram suggests 
strongly the so-called Cole-Cole arc .  Of course, the Cole-Cole a r c  represents 
a specific dispersion function, and is not to be confused with the Cole-Cole dia- 
gram, except as an interesting coincidence: the Cole-Cole dispersion function has 
a very simple geometrical form in the Cole-Cole diagram; an arc of a circle 
with the center depressed an angle of 7r/2a from the E ' -axis.. Since a is the only 
adjustable parameter, and the a rc  can be rigorously and readily drawn, a test 
to find whether the relaxation data fit the Cole-Cole arc is particularly simple. 
This leaves lesser ambiguity than to f i t  the data by two simultaneously adjustable 
parameters,  such as the dispersion iunction of Krotzsch.' 

The most important observation is that the dispersion function of the ferr i te  
under discussion is not represented by the Cole-Cole dispersion function of 
complex permittivity, but by a Cole-Cole type of dispersion function of complex 
conductivity. hlathematically, we mean instead of the ordinary Cole-Cole 
function,6 

E *  = E m  t - em) [I t ( iwT)l-a]  - I ,  (2) 

the result of Grant implies that the dispersion function should be, 

ff* =cT t (Dm - Do) [I t ( iw7)1-a ' ]  -I, (3 ) 

By using Eq. (l), one can 
if and only if a. = a' = 0, 

show that functions given by Eq. (2) and (3) are equal 
that is the case of Debye dispersion. Figs. 2 and 3 
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show the two representations of the function given by Eq. (2). By interchanging the 
symbols w and E , and simultaneously changing the sense of the increase of W ,  

those figures also represent the function given by Eq. (3). We want to point out 
a divergence of u’ a n d c ”  f o r  Eq. (2) at infinity frequency, and of E ’  and E ”  at 
zero frequency. The difference between Figs. 2 and 3 is contributed by the dif- 
ferent value of a ;  Fig. 2 is for  u < 0.21 and Fig. 3 for  u > 0.21, that i s ,  5 L y  
when a < 0.21, Q’’ of corresponding Eq. (2) will show a maximum. 

In the case of Fig. 1, we found a value of 0.13 for a’ in the complex conductiv- 
ity representation; therefore, according to the above argument, a maximum should I 

be observed in the complex permittivity representation. The contradicting 
result with respect to Fig. 1 is due to the fact a d.c. conductive effect has not 
been subtracted. In fact, after we subtract the respective d.c. conductive and 
a.c. capacitive effect from Koops data, we obtain the result of Fig.4. Here the 
close fitting of the data points with the curves computed from Eq. (3) strongly 
support the new dispersion function given by Eq. (3). 

111. TEST OF MODEL 

Although there are three o r  four models referred to in Ref. 1 which show 
some difference in  mathematical forms,  the original model of ;-loops3 can be 
discarded because it fails to produce the feature of a broadening relaxation in 
the absorption peak - broader then that of the Debye dispersion.8 The mathe- 
matical analytic aspect of other models can be included in the generalized model 
of Krotzsch,’ and, therefore, we wil l  limit our discussion to the dispersion functions 
of Krotzsch and of Eq. (3). 

It is known9 in general, one can adjust the two parameters,  b and c of 
Krotzsch such that the curve computed from his formula can be made very 
close to that of Eq. (3), without significant difference, especiaily in the region 
of frequency where the dispersion &antities undergo a rapid change. But 
actually, from analytical point of view, it is more important to know the manner 
for  these quantities to approach the zero frequency and the infinite frequency. 
Since the paper of Krotzsch is very recent, and mathematical procedure to es- 
tablish the analytic properties are very simple, we will not repeat the equations 
of Krotzsch and our derivations. Table 1 lists the qualitative comparison. A s  
frequency spans from 0 to O, we listed some asymptotic properties. f stands 
fo r  finite, inc for  increasing, dec for decreasing, M fo r  an existence of a maxi- 
mum. Since the maximum should occur at a finite frequency, a closeexamina- 
tion of an would be most fruitful to test the validity of models. 
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Another critical region to be examined is th;e low f r equexy  behavior of E '  

and t ". We note that specimen 2 of Ref. 1 ,  a i d  several data of Kamiyoshi4 shows 
that the dielectric constant and loss at low freqwncy does not seem to have a 
saturated value. In Ref. 1 ,  a work of Habe! is raf2rre:d where a more compli- 
cated conductivity state is used as an interpretation. It might Le ir.teres.iin2 ta 
investigate Eq. (3) and the resulting Fig. 2 and 3, before intmdwing a :iew 
mechanism. 

Although there a r e  always experimental difficulties and reproducibilities 
a t  extreme frequencies, perhaps more extensive measurement at moderately 
high temperature is interesting. That is based on the consideration of the rapid 
decrease of the relaxation time at high temperature, therefore, "d.c. values" 
of dispersion quantities can be obtained at conveniently attainable frequencies. 
In this respect, however, complicated problem of electron diffusion as envisaged 
by Norwicklo must be taken into acco'mt. 

In conclusion, it seems rather important to examine completely the mathe- 
matical analysis before elucidating and provhg the validity of a serious physical 
model based on a comparison between the experimental data and mathematical 
numbers at some finite temperature or freqGency region. 
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TABLE I 

Kro tzsc h 

Eq. (3), a'< .21 

Eq. (3), a' >.21  

0 i n c  f 0 inca f d e c O  0 hi 0 

0 inc f 0 M 0 m d e c  0 m M 0 
0 i n c  f 0 M 0 m dec  0 codec 0 
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Figure 1-Argand diagram of Ni-Zn ferrite dielectric dispersion from Koop's 
datum, (a) complex conductivity represcfitatfcin, jb) comsiex permiiiivity repre- 
sentation (after Grant). 

Figure 2-Complex permittivity and complex conductivity rearesentations of 
Cole-Cole function, Eg. (2), for a < 0.21. 

Figure 3-Complex permittivity and complex condwtivity represectations of 
Cole-Cole function, Eq. (2), for a > 0.21. 

Figure 4-Complex permittivity and complex conductivity r e p r e s z k t i o n  of the 
data of Fig. 1. Experimental points a re  based on KOOP'S datum. Curves are 
computed from Eq. (3). 
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